Scientist Profiles: Prof. Rafael Luque

Editor’s Note: Prof. Rafael Luque leads the Nanoscale Chemistry and Biomass/Waste Valorisation Group at the University of Cordoba, Spain. He is also member of the editorial board of prestigious journals, Editor-in-Chief of the Porous section of the journal Materials, Editor of Journal of Molecular Catalysis A: Chemical, and Series Editor of Topics in Current Chemistry (Springer). Prof. Luque will be a keynote speaker at the International Symposium on Green Chemistry 2017 next month in La Rochelle, with a talk titled Benign-by-design methodologies for a more sustainable future: from nanomaterials to heterogeneous (photo)catalysis and biomass/waste valorization. In addition, he will join NESSE on May 18th for a special session at ISGC 2017: “Thriving Careers and Sustainability: A Panel Discussion”. For more information, please visit  

When did you know you wanted to dedicate yourself to chemistry?

I was always impressed by the fact that chemistry is ubiquitously present in our daily life. It is in everything we do and see, and from my perspective as an organic chemist, I would say it is even part of ourselves. I was very curious when I was a kid about common everyday observations that I related to chemistry. When I started my PhD studies I also became very interested in green chemistry, in the sense of trying to work on advances towards a more sustainable society and ways of living.

What is your current research focused on?

Throughout the years, we have been able to branch out the scope of our research. Nowadays we are focused on three different platform technologies.

  1. Nanoscale chemistry – We design our own nanomaterials, supported metal nanoparticles, and quantum dots for different applications.
  2. Application of nanomaterials – This work is done mostly in the area of heterogeneous catalysis and photocatalysis, and more recently we are developing photoluminescent materials. We are also working at the interface of chemistry and biology by developing bioinspired functional materials for biologically-related applications.
  3. Flow chemistry – We work on continuous flow processes that are scalable for chemical industry. In addition, we also work on biomass and waste valorisation. Here we utilize bio refinery concepts in order to further evaluate the possibility to convert residual feedstocks into chemicals, materials, and fuels.

What would you say your first approach to green chemistry was?

Originally I was not quite aware of it. When the concept started in the 90s I was a high school student. My first major connection with it was during my Postdoc with Prof. James Clark at the University of York. Working at the Green Chemistry Centre of Excellence gave me the opportunity to understand what this concept can provide to society, industry, and research in general. I was fascinated by the possibilities that we have improve the future for upcoming generations by reducing our environmental footprint.

Rafael Luque-2

As a professional in academia, how do feel education has changed around the concept of green chemistry? What do you believe are the possibilities in this field?

I think education is very important for the formation of future generations. For green chemistry in particular, education is a tool to help new generations understand the possibilities we have to improve our way of behaving, working, and living. I would say that green chemistry is not limited to the scope of chemical education, the core values of it reach out to a more general audience. I think this is a critical aspect that needs to be taken into account to provide social awareness of what the beneficial effects of green chemistry are on the environment with concrete examples, such as how we can replace current products derived from petroleum by more sustainable products.

With regards to formal education, the curricula have changed, although this might be at a rather slower pace.  All over different countries you see courses that either incorporate the 12 principles of green chemistry, or tackle more specific topics, such as sustainability in processes for fine chemical production, catalyst synthesis, polymer production, etc. The possibilities are endless, and we could spend a long time speaking about them. Using waste as a resource for many potential products that we can extract and harvest, design of new materials, catalysts, continuous flow processes… All of these are areas of opportunity both for green chemistry and chemical education.

You have managed to develop start-up companies in addition to your work at the University of Cordoba. How did your introduction into entrepreneurship occur?

At some stage the research and the topics you focus on can somehow steer you in different direction. In our case the key factor that motivated the creation of our start-ups was the fact that, in addition to working on fundamental research, we also conduct applied research. We managed to succeed in reaching the market in terms of prototypes and products that we proposed, in order to provide alternatives for the chemical industry of the future. This eventually led to the development spin-off companies from our work, so far three of them. One of them started out as a collaboration with the University of York in the UK, and two other companies in Spain. We are currently working on creating a new one in China. The possibilities in this case are always related to the broadness and the applicability of our research. In this case, we had significant expertise on the field, and this led to incurring in an entrepreneurial path.

We often hear about professional accomplishments, but often we overlook the struggles that they represented. What would you say are some of the challenges you have faced throughout your career?

I have had several challenges in my career. I come from a traditionally deprived region in the south of Spain. Starting my research group from scratch back in 2009 was complicated in terms of funding, access to resources, students, etc. It required a lot of dedication, especially in the middle of a big recession, which may have been a different situation had I been in a different place.

From a personal perspective, I come from a modest family. During my studies, I had to put a great effort to try be the best in my class in order to qualify for fellowships to pay for my studies and then for my PhD. My advice to young scientists is to always bring motivation and passion in whatever you do. Particularly, resilience is a quality that I feel missing in some students these days. It is not easy to receive a lot of funding at the beginning of your career, regardless of how great you/your ideas are. In the past I would submit twenty proposals to get one, but I never lost hope, never lost my passion and my will to keep pushing that will bring you to eventual success.  It is a learning curve that requires time, but a self-driven character and resilience are very helpful along the way. Fighting and being able to come back stronger after a rejected paper/proposal/application is the way forward!!