Scientist Profiles: Prof. Dr. Felix Ekardt

Editor’s Note: Prof. Dr. Felix Ekardt is a interdisciplinary sustainable scientist in scientific fields legal studies, philosophy and sociology. He manages the Research Unit Sustainability and Climate Policy in Leipzig and Berlin, Germany, and gives statutory advices on EU, national and state level. Prof. Ekardt presents around 60-70 scientific and popular lectures nationally and internationally and is currently working on projects based around a wide range of topics including social energy, sustainable corporate law, human rights and environmental law, municipal climate protection and development of national climate protection legislation. We are delighted that he took the time to speak to us!

1) How do you understand the term ‘sustainability’?

Sustainability means a way of life that can be maintained on an intertemporal and global scale. This is a completely new challenge in human history since we have a traditional tendency of focussing on what is going on here and now. The typical example of a sustainability issue is the energy and climate transition.

2) For a sustainable transformation, we need law changes and a different legislative framework for the markets. We are not allowed to make use of all the oil, gas and coal that exists, if we want to prevent a climate change. The German energy transition (Energiewende), which is actually a power transition (Stromwende), is necessary for a sustainable development. Can the German approach be a role model for other countries?

In December 2015, states across the world have agreed on a new climate agreement. The Paris climate agreement lacks ambition in most of its details and as such is disappointing. At the same time, it contains a very ambitious target which is unfortunately frequently overlooked. It determines that global warming needs to be limited to well below(!) 2 degrees Celsius, and even undertake efforts to limit it 1.5 degrees Celsius. For an industrialized country such as Germany with high per capita emissions, but on the bottom-line for every country, this requires zero greenhouse gas emissions and fossil fuels in power, heating, fuels and material use by around the year 2038. This is to limit global warming to well below 2 degrees Celsius according to the data of the Intergovernmental Panel on Climate Change (IPCC). Taking the limit to 1.5 degrees Celsius, the global phase out of greenhouse gas emissions would need to be reached by the end of the 2020s. This applies if assuming that technologies to achieve negative emissions are not technically feasible or extremely dangerous. The climate debate in Europe and the world largely neglect that.

Taking the described temperature limit as point of reference, key governance deficiencies in the factual energy transition become apparent. The energy transition, as currently implemented (almost anywhere), is basically a power transition. Heating, transport and material use of fossil fuels e.g. fertilizer (and areas of climate emissions beyond fossil fuels which mostly occur in the agricultural sector) are neglected. Policy measures taken so far in Europe and elsewhere are not in the least enough to induce a speedy and complete phase out of fossil fuels – even in the power sector and especially not in other mentioned sectors. Not only other sources of emissions, but also other environmental problems tend to lose attention. Considering per capita emissions, industrialized states are very far away from zero emissions. In the EU, the statistically achieved emissions reductions – from very high levels – since 1990 are surpassed by emissions simply shifted abroad. This becomes apparent if summing up imports and exports. Because the emission-intensive production sites of modern global economy are increasingly relocated to emerging economies.

It is however ambiguous, whether environmental protection will be successful if purely based on technical solutions. Taking into account the speed of innovation so far, it seems not very probable that a transformation to increased renewable energies and energy efficiency will reduce greenhouse gas emissions to zero in 10 or 20 years. Sufficiency is also needed.

3) You describe a double vicious circle, on the one hand between citizens and politicians, on the other hand between customers and companies, that has to be interrupted. Our economic system is based on self-interest, egoism and competition, the greed for more material wealth is not limited. In my opinion, this is a serious problem for sustainable development. Shouldn’t we try to increase awareness and mindfulness, to succeed with a social transformation based on cooperation, altruism and sufficiency? As a human being with freedom of will, we have the gift of controlling our emotions and behaviour. I think we also have the responsibility to make use of that. Do you agree?

Based on pluralistic methodological approaches, one can show that non-sustainable and non-sufficient behaviour has various sources in different actors and that it should therefore be avoided to focus relevant aspects of behavioural science only. Pure knowledge of facts has proven to be only a small part in triggering behaviour. More important is an understanding of how actors are interdependent. The behaviour of citizens for example is influenced by politicians and vice versa, the same goes for the dependency between enterprises and consumers. It is part of a certain economic system to constantly acquire customers that buy more and new products without caring about the means of production and that are inclined to find products which are produced socially and ecologically exemplary too expensive. But it also requires enterprises which offer – or in fact do not offer – customers products to trigger needs and thus constantly increasing their profits, ergo keeping up the spiral of growth and high resource intensity. It would be misleading however to simply talk in Marxian tradition of exploitation and estrangement, particularly since many liberties have been installed in modern societies at the same time. As suggestive as many offers might be, production and consumption are not forced by just one side and many individual suppliers and demanders make their contributions. The role of factors – determined by all above mentioned methods – such as self-interest, the dilemma of public goods, path dependencies and conceptions of normality as aspects of motivation in this interaction, especially looking from an economic point of view has been described by many. Two aspects crucial to comprehensively explaining the reluctance to act on sufficiency are however frequently neglected.

One of which are common conceptions of normality as shown by many. Despite all intellectual recognition, we continue living in a high-emission world. If setting aside this article, the next meat buffet, the next car drive to work or the next holiday flight is not far. These things are just ordinary nowadays, as long as one can afford them financially. Dismissing flights as a whole might lead to social pressure and an image as “weirdo”. Lifestyle is also relevant to social standing if. in a current situation. the social surrounding requires a certain apartment, cars and travels in order to belong. This is increasingly true for countries outside the Western hemisphere, which follow the role models in industrialized countries. Especially decision-makers in politics and enterprises are often used to entertaining a lifestyle that includes frequent flights, opulent buffets, global friendships, regular meat consumption, and now they are required to think of abolishing it (with foreseeable results). Conceptions of normality vary significantly at the moment, however the fact that they develop them (unconsciously) in order to simplify ordinary activities seems to be a biological invariable.

Human emotions are likewise relevant for all of us, including entrepreneurs, politicians, civil servants etc. Geographically and temporally distant, invisible, in highly complex causalities which make it hard to imagine damages due to climate change yet caused by an ordinary activity are usually not emotionally accessible to people (citizens, politicians, entrepreneurs).

All aspects are to be encountered both in the individual and in structures – there of course in humane – forms. “Self-interest”, “conceptions of normality” or “emotions” are not only visible in individuals but are also shaping higher structures; so in the end, retention of power or accumulation of capital are collectivized variations of self-interest and path dependencies.

Non-sustainable behaviour is therefore easy to explain. At the same time, these findings hint at the fact that a fundamental turn towards sustainability and specifically sufficiency might be very hard to achieve, as there is reason to assume that emotions are part of a core biological configuration which cannot be eliminated. It will however be essential that different actors will move at once – and that aspects which can be changed are in fact changed, e.g. self-interest calculations or path dependencies, which can be influenced through new political frameworks such as levies or caps on fossil fuels. Pricing will also support a change in conceptions of normality. However, it will hardly be possible to achieve change exclusively through political measures, because of the interdependencies of actors; it is of particular importance to have someone demanding new policies. The central piece however is not just discourse, but practicing new and more sustainable normalities.

4) What has to be done to perform energy transition successfully?

Approaches to environmental protection so far usually aim at regulating individual products, plants or actions. To do so, mostly commands or prohibitions are formulated, e.g. standards for emission limits for cars, houses or products.  The problem here is firstly that the measures taken are not even close to being fit to comply with key political targets like the 1.5-to-1.8-degree temperature limit of the Paris Agreement, stop biodiversity loss, stop of degradation of ecosystems and soil, stabilizing of nitrogen cycles etc. This implies the mentioned speedy and complete phase out of fossil fuel use and decreasing land use. Secondly, the focus on single products, plants or actions contains the inevitable disadvantage that it will lead to unplanned shifting effects. Environmental problems are shifted into other countries and possibly to other sectors. Well-insulated houses in the EU might reduce the heating bill, enabling in turn even more climate-harmful holiday flights. If the use of crude-oil containing mineral fertilizers is reduced in the EU, it might either induce even more intensive agriculture elsewhere (to produce products which are then imported into the EU). Or an increased use of green genetically modified organisms (GMO) which are not compatible with small-scale farming as a solution to various environmental problems. Thirdly, with regards to ecological strains or resource problems, the individual car or one round of fertilizer is not the core of the problem. It is rather the cumulation of many of those processes. Nothing is solved if an individual car becomes more efficient, but then more higher-performing cars are on the road, also due to an increasing wealth (rebound effect).

Therefore, in looking for more effective policy instruments, a key starting point should be the core factor of several environmental problems, with are fossil fuels. They are, especially through fertilizer, key driver of modern agriculture, and address as such not only climate change but also biodiversity as well as disturbed nitrogen cycles. The target according to the Paris Agreement is therefore the total phase out of fossil fuels of the markets in all sectors (also in transportation, heating, agriculture) gradually in 10 or 20 years. If done with a global or at least a European cap (absolute quantity control), this would lead to far-reaching consequences. This system would not in the least resemble the existing EU ETS, because it would achieve a strict cap (including the elimination of old certificates) as well as a complete inclusion of fossil fuels. Justification of this approach is primarily its ecological effectiveness and not its possible cost-efficiency (while there is a good chance it might also be achieved).


Renewable energies, energy efficiency and sufficiency would replace fossil fuels for power, heating and transportation. The amounts of fossil fuels on the market would simply decrease until they will finally not be available on the market anymore in 10 to 20 years. The increasing scarcity will lead to dramatically increasing prices. The materially and geographically broach approach is crucial for the effectiveness of the instrument – especially to avoid rebound and shifting effects. Conventional agriculture would gradually see a transition to ecological agriculture. Also, the production of animal products would become less attractive overall; production of animal products would increasingly shift towards low-emission pastoral farming. Consequently, also less production quantities and decreasing disposal rates.

It is crucial to tax imported goods with the additional costs of energy and land-use pricing as eco tax; exported goods should be exempt at least partially from the additional costs. Those so called border adjustments will prevent that production, for instance steel industry or production of animal feed, is moved outside the system.

5) We need new role models for a paradigm shift. Matthieu Ricard said in an interview with Barbara Bleisch that the messenger has to be the message, when he/she wants to be convincing. So do you live sustainably?

Role models really matter a lot. I do not have a driving license, I am a vegetarian since 1993, I do not go on holidays by plane, even on a professional basis usually I do not go by plane. I used to live in a very small flat until the age of 40, I do not have a cell phone etc. pp. But we all, including me, have to improve our sustainability performance.